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1.  Waves in a Plasma

Wave Representation

A plane wave is one whose direction of propagation and amplitude is everywhere the same.

Light or radio waves traveling through a plasma.  Standard representation is:

n = n exp i k • r − ωt( )( )

where

k • r = kxx + kyy + k zz

k is wave vector or propagation constant.  Convention: exp. notation means real part of

expression is the measurable quantity.  If n  is real, and wave propagates in x direction only, then

Re n( ) = n cos kx − ωt( ) .

A point of constant phase on the wave front moves so that d / dt( )[ kx − ωt( ) = 0

i.e.

dx

dt
=

ω
k

= vph

ω/k > 0 then wave moves to the right, i.e. x increases to keep kx - ωt constant.

Group velocity.

vph > c is possible, as infinite wave train of constant amplitude carries no information until it is

modulated.  The modulation information does not travel at the phase velocity, but at the group

velocity, and vg < c.

Consider two beating waves

E1 = E0 cos k + ∆k( )x − ω +∆ ω( )t( )

E2 = E0 cos k − ∆k( )x − ω −∆ ω( )t( )

each wave must have the phase velocity ω/k appropriate to the medium.  Therefore there must be

a difference 2∆k in the propagation constant.
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Let

a = kx −ωt

b =∆ kx − ∆ωt

Then

E1 + E2 = E0 cos a + b( ) + E0 cos a − b( )
= E0 cos a( )cos b( ) − sin a( )sin b( ) + cos a( )cos b( ) + sin a( )sin b( )( )
= 2E0 cos a( )cos b( )
E1 + E2 = 2E0 cos ∆kx −∆ ωt( )cos kx −ωt( )

i.e. a sinusoidally modulated wave.  The envelope of the wave is given by cos[∆kx-∆ωt] and

travels at ∆ω/∆k.  In the limit ∆ω ⇒ 0, we have the group velocity.  Same holds for a wave

packet.

vg =
dω
dk

Index of refraction

µ =
c

vph

=
ck

ω

Generally it is frequency and wave number dependent.  Propagation occurs only if the medium is

transparent, and the refractive index is real.  The group refractive index is used when considering

wave packets, and

µg =
c

vg

=
ck

∂ω /∂k( )

To see the relationship between the two refractive indices, note that

∂µ
∂ω

=
c

ω ∂ω /∂k( ) −
ck

ω 2

Solve this for ∂ω/∂k, and insert into definition of µg, to give

µg = µ + ω∂µ
∂ω

vg = c

µ + ω ∂µ /∂ω( )

p 5.3



plasma sensors chapter 5 August 3, 1997

Polarization

Consider two waves which we can measure

E = Re E0 exp i k• r − ωt( )( )

B = Re B0 exp i k • r − ωt( )( )

E0 and B0 are in general complex vectors.  Write

E0 = A0e
iδ = E1 + iE2

where A0 is a real vector.  Now consider a wave propagating in the z direction.  Then we can let

E1 = ˆ x E1 sinδ + ˆ y E2 cosδ
E2 = − ˆ x E1 cosδ + ˆ y E2 sinδ

A simple example.  Let δ = π/2 so that

E1 = ˆ x E1

E2 = ˆ y E2

With this choice

E0
2 = E1

2 + E2
2

Ex = E1 sin k •r − ωt( )
Ey = E2 cos k • r − ωt( )

Ey
2

E2
2 +

Ex
2

E1
2 = 1

i.e. an ellipse.  Thus for plane waves the E field at each point rotates in space at an angular

frequency ω in a plane perpendicular to the direction of propagation.  Generally the tip of the

vector describes an ellipse and the wave is elliptically polarized.  An observer looking in the

direction of propagation sees a clockwise sense of direction.  If E1 = E2 the wave is circularly

polarized.  If E1 or E2 = 0, then the wave is linearly polarized.
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Small amplitude perturbations

∂
∂t

⇒− iω

∇⇒ ik

∇• ⇒ ik •
∇×⇒ ik ×

Some elementary waves in plasmas:

Plasma oscillations

Electron plasma waves

Sound waves

Ion waves

Electrostatic electron oscillations perpendicular to B

Electrostatic ion waves perpendicular to B

Lower Hybrid frequency

em waves with B0 = 0

em waves perpendicular to B0

em waves parallel to B0

Hydromagnetic waves

Magnetosonic waves

em waves with B0 = 0 in vacuum

Review vacuum case.  Ordinary light waves are transverse em waves in which k is perpendicular

to both oscillating E and oscillating B of the wave.  Maxwell ⇒
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∇× E = −
∂B
∂t

∇× H = J +
∂D
∂t

∇• B = 0

∇ • D = ρc

B = µH

D = εE

with j = 0 and ε0µ0 = c2 (vacuum)

∇× Ε1 = − ˙ Β 1
c2∇× Β1 = ˙ Ε 1

take curl of second equation, substitute into time derivative of first, gives

∇× Ε1 = − ˙ Β 1
c2∇× ∇ × Β1( ) = ∇ × ˙ Ε 1 = − ˙ ̇ Β 1

Assume standard wave representation:

ω2
B1 =−c2

k × k × B1( ) =− c2 k k • B1( ) − k
2B1[ ]

Now

k • B1 = −i∇• B1 = 0

so

ω2 = k
2c2

i.e. phase velocity = c.  In a plasma the first of Maxwell's equations we have used is unchanged,

but the second has a new component .

Dielectric properties of a plasma

Plasma resembles a system of coupled oscillators.  Define a polarization and magnetization

vector

P = D − µ0E

M = B
µ0

− H
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These are only meaningful in a material (they vanish in free space).  Substitute into Maxwell's

equations to get

∇× B = µ0 JT + µ0ε0

∂E
∂t

∇• E =
ρT

ε0

where

JT = J +
∂P
∂t

+∇ × M

ρT = ρc −∇ • P

∂P/∂t is polarization current, ∇× M  is magnetization current, ∇• P  is polarization charge.  J

and ρc are external sources, while other terms are medium dependent.  Now take curl of first of

Maxwell's equations and use above to get

∇× ∇× E( ) =∇ × ˙ B =− µ0
˙ J −

˙ ̇ E 
c2

where we have dropped subscript T on J (we are referring to total current).  Then

−k × k × E1( ) = iµ0ωJ1 +ω 2 E1

c2

em waves with B0 = 0 in a plasma.

Expand LHS to get

k 2E1 − k • E1( )k = iµ0ωJ1 + ω2 E1

c2

Assume ions are at rest, so that the wave electric field drives the electrons into motion and

produces the current

J1 = −enu1

The velocity u1 is found for the B = 0 case (or a case where u x B = 0) from the equation of

motion

u1 =
eE1

imω

Then
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k 2E1 − k • E1( )k = −
ωp

2

c2 E1 +
ω 2

c2 E1

For waves with k • E1 = 0  (transverse), we have

ω2 = ωp
2 + k2c2

ωp =
ne2

mε0

is the plasma frequency.  Introducing plasma modifies the dispersion relationship because of the

electron motion which is a current.  The phase velocity is > c.

v ph =
ω
k

= c 1 +
ωp

kc

 
 

 
 

2

Group velocity is

vg =
∂ω
∂k

=
kc2

ω
=

c2

vph

(Always < c because c/vph < 1)

The index of refraction is

µ =
ck

ω
= 1 −

ω p
2

ω2

If a wave of frequency ω is sent into a plasma, the k vector (i.e. the wavelength λ = 2π/k) will

take on the value described above.  Waves propagate only if µ2 > 0.  i.e. we must have ω > ωp.

The cutoff frequency occurs at ω = ωp.  For waves with ω < ωp the index of refraction is

imaginary.  If ω is real then k is imaginary, which means the waves are attenuated.  Let

k = kR + ikI

Spatial dependencies become

e ik• r = eik R •re−kI •r

The skin depth is defined as

d = k I

−1

i.e.
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d =
c

ω p
2 −ω 2

Including a magnetic field

Consider perpendicular propagation, k⊥B0 .  Now take transverse waves, so that k⊥ E1  There

are still two choices, E1 can be parallel to B0 or E1 can be perpendicular to B0.

Ordinary Wave

Consider the Ordinary Wave, with E1 parallel to B0.  E1 is parallel to B0, take B0 = B0 z, E1 = E1

z and k = k x. e.g. a microwave launcher with a narrow dimension in line with B0.  The wave

equation is unchanged: for transverse case

k 2E1 = iµ0ωJ1 + ω2 E1

c2

We use J1 = −enu1.  Since E1 = E1 z we only need the uez component, given by

m
∂uez

∂t
= −eEz .

This is the same as for the no-B case, so u1 = eE1 / imω( ) and the results are the same.
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The extraordinary wave

If E1 is perp to B0, the electron motion will be affected.  You might think to take E1 = E1y and k

= k.  But waves with E1 perp to B0 tend to be elliptically polarized, not plane polarized, so that

as the wave propagates into a plasma it develops a component Ex along k allowing E1 to have x

and y components

E1 = E xx + E yy

The linearized equation of motion is (set Te = 0, forget subscripts e and 1))
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−imωv e1 = −e E + v e1 × B[ ]
v x =

−ie

mω
Ex + vy B0[ ]

v y =
−ie

mω
Ey + v xB0[ ]

Solve:

v x =
e

mω

−iEx −
ω c

ω
Ey

 
 

 
 

1− ωc
2

ω2

 
 
  

 

v y =
e

mω

−iE y +
ω c

ω
Ex

 
 

 
 

1− ωc
2

ω2

 
 
  

 

where ωc = eB/(m)

The wave equation is

k 2E1 − k • E1( )k = iµ0ωJ1 + ω2 E1

c2 =
iω
ε0c

2 J1 + ω2 E1

c2

keeping the k.E1 = kEx term

ω 2 − c2k 2( )E1 + c2kExk = −
iω
ε0

J1 = in0ωe
v e1

ε0

Separate into components and substitute for v:

ω2Ex =
−iωn0e

ε0

e

mω

iEx +
ωc

ω
Ey

 
 

 
 

1 − ω c
2

ω 2

 
 
  

 

 

 

 
 
 

 

 

 
 
 

ω 2 − c2k2( )Ey =
−iωn0e

ε0

e

mω

iEy −
ωc

ω
Ey

 
 

 
 

1 − ω c
2

ω 2

 
 
  

 

 

 

 
 
 

 

 

 
 
 

now use definition of plasma frequency ωp
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ωp =
n0e

2

ε0m

ω2 1 − ωc
2

ω 2

 
 
  

 
−ω p

2 

  
 

  Ex +
iω p

2ωc

ω
E y = 0

ω 2 − c2k 2( ) 1 −
ω c

2

ω2

 
 
  

 
−ω p

2 

  
 

  Ey −
iω p

2ωc

ω
E x = 0

These two simultaneous equations have a solution if

ω 2 1 −
ωc

2

ω 2

 
 
  

 
−ω p

2
 

  
 

  
iω p

2ω c

ω

ω2 − c2 k2( ) 1 −
ω c

2

ω2

 
 
  

 
−ω p

2
 

  
 

  −
iωp

2ω c

ω
Ex

= 0

Define an upper hybrid frequency

ωH
2 = ωp

2 + ω c
2

which is the frequency of electron waves across a B field. Note that the first element in the
determinant is just ω2 - ωH2, and the solution is equivalent to

ω 2 − ωH
2( ) ω 2 − ωH

2 − c2k 2 1 −
ω c

2

ω 2

 
 
  

 
 

  
 

  =
ω p

2ωc

ω
 

 
  

 
 

2

c2k2

ω 2
=

ω 2 −ω H
2 −

ω p
2ωc

ω
 
 
  

 
 

2
1

ω 2 − ωH
2

 

 
 

 

 
 

ω2 −ω c
2

Replace the first ωH
2 = ωp

2 + ω c
2   on the RHS, and multiply through by ω2 - ωH2 to get

c2k2

ω 2 =
c2

vp
2 =1 −

ω p
2

ω2

ω 2 − ωp
2

ω 2 − ωH
2

Cutoffs and resonances.

Cutoff when index of refraction ⇒ 0, i.e. when λ ⇒ infinity, or k ⇒ 0, as index of refraction =

ck/ω.  A resonance occur when the index of refraction becomes infinite, or when λ ⇒ 0.

So resonance of X mode when k = infinity, and
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ωH
2 = ωp

2 + ω c
2 = ω 2

As a wave of given ω approaches this point, its phase velocity and group velocity approach zero

and the wave energy is converted to upper hybrid oscillations. The X mode, which was

electromagnetic and electrostatic, becomes an electrostatic oscillation.

The cutoff is found when k = 0 as

  

1 =
ω p

2

ω 2

ω 2 − ωp
2

ω 2 − ωH
2 =

ω p
2

ω2

1

ω2 − ωH
2( ) / ω2 − ωp

2( )
=

ω p
2

ω 2

1

1− ω c
2

ω2 −ω p
2( )

 

 
 

 

 
 

1 −
ω c

2

ω2 − ωp
2( ) =

ω p
2

ω 2

1 −
ω p

2

ω 2 =

ω c
2

ω2

1 −
ω p

2

ω 2

1−
ω p

2

ω 2

 

 
  

 
 

2

=
ω c

2

ω 2

1−
ω p

2

ω 2

 
 
  

 
 = ±

ω c

ω

ω2 m ωωc − ωp
2 = 0

two cutoff's, the left hand and right had (see pictures later)

ωR =
1

2
ω c + ω c

2 + 4ωp
2[ ]

ωL =
1

2
−ω c + ω c

2 + 4ω p
2[ ]

Plot ω2/(c2k2) = 1/µ2 (1/(refractive index)) against frequency.  Imagine ωc fixed, and wave of

fixed ω enters plasma from outside. `As wave enters regions of higher density, the frequencies

ωL, ωp, ωH and ωR will increase (moving to the right).  This is the same as if the density was

fixed, and the frequency ω gradually decreases.  So at large ω (low n) vp approaches c.  vp

increases until the RH cutoff (hence RH) at ω = ωR.  There vp is infinite.  Between ω = ωR and ω
= ωH , ω2/k2 is negative and there is no propagation.  at ω = ωH there is a resonance, and vp = 0.

Between ω = ωH  and ω = ωL propagation is possible, and the wave travels either > or < c

p 5.13



plasma sensors chapter 5 August 3, 1997

depending on whether ω is < or > ωp.  at ω = ωp the wave travels at c.  There is another region of

no propagation for ω < ωL.

General em waves in plasmas

See previous analysis for

−∇ × ∇ × E( ) = iµ0
˙ J 1 +

˙ ̇ E 
c2

Will Fourier analyze assuming wave field are small enough that the current is a linear function of

the electric field.  Then we write e.g.

E x ,t( ) = E k ,ω( )e i k •x − ωt( )dk 3dω∫

and treat each Fourier mode E(k,ω) as separate.. We assume am Ohm's law

j k,ω( ) = σ k,ω( ) • E k,ω( )

with s the conductivity tensor.  For a single Fourier mode we have
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k × k × E( ) + iω µ0σ • E − ε0µ0iωE( ) = 0

i.e.

kk − k 2i +
ω2

c2 ε
 
 
  

 
• E = 0 a)

ε = 1 +
i

ωε 0

σ
 
 
  

 
 

where i is the unit dyadic and ε the dielectric tensor. This represents three simultaneous

homogeneous equations , and to have a non zero solution we require the determinant be zero

Det kk − k 2i +
ω 2

c2 ε
 
 
  

 
= 0

This is the dispersion relationship.  The propagation of equation a) is a matrix eigenvalue

problem.  The eigenvalue (which makes the determinant zero) gives the dispersion relationship,

while the eigenvector E corresponds to a certain eigenvalue.  The simplest case is for an isotropic

medium when σ = σ1 and ε = ε1.  Then we can separate the wave into two types, one where the

E polarization is transverse (k • E = 0 ) and one where the E polarization is longitudinal

(k × E = 0) to the propagation direction.  Taking k along the z axis we have

kk − k 2i +
ω2

c2 ε
 
 
  

 
=

−k2 +
ω 2

c2 ε 0 0

0 −k2 +
ω 2

c2 ε 0

0 0
ω 2

c2
ε

 

 

 
 
 
 

 

 

 
 
 
 

The determinant = 0 when

−k2 +
ω2

c2 ε = 0 E transverse

ω2

c2 ε = 0 E longitudinal

The transverse dispersion is the familiar µ = kc/ω = ε1/2 (optics).  The longitudinal dispersion is ε
= 0, which can be non trivial.  When ε is anisotropy there is no simple division into transverse

and longitudinal.  Choosing k along z, the matrix will have non zero off diagonal terms arising

from those of ε.  If these terms contain explicit k dependence, the determinant will be quadratic
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in k2, and there will generally be two solutions for k2 for a given ω.  These correspond to the

transverse waves of the isotropic case.

To obtain the plasma conductivity consider a single electron.  Consider only the effects of the

wave field, including a static B0 but ignoring collisions.  This cold plasma approximation (we

have assumed thermal velocities can be ignored wrt vp, which is ≈ c)

me

∂v
∂t

= −e E + v × B0( )

The three components are

−meiωv x = −eE x − eB0v y

−meiωvy = −eEy + eB0vx

−meiωvz = −eEz

These can be solved to give

v x = −ie
ωme

1
1−Ω 2 /ω 2

Ex − i
Ω
ω

Ey

 
 

 
 

v y =
−ie

ωme

1

1 −Ω 2 /ω2 i
Ω
ω

Ex + Ey

 
 

 
 

v z =
−ie

ωme

E z( )

where Ω = eB0/me is the electron cyclotron frequency.  All the electrons move the same, and the

current density is

j = enev = σ • E

and the conductivity tensor is

σ =
inee

2

ωme

1

1 −Ω2 /ω 2( )

1 −i
Ω
ω

0

i
Ω
ω

1 0

0 0 1 −Ω 2 /ω2

 

 

 
 
 
 

 

 

 
 
 
 

The ions can be treated the same.  The total is approximately equal to the electron value as me <<

mi as long as the frequencies are high enough.

the dielectric tensor ε = 1 +
i

ωε 0

σ
 
 
  

 
  becomes
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ε =

1−
ωp

2

ω 2 −Ω2

iωp
2Ω

ω ω 2 − Ω2( ) 0

−iω p
2Ω

ω ω2 −Ω 2( ) 1−
ω p

2

ω2 − Ω2 0

0 0 1−
ωp

2

ω2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

where the plasma frequency ωp = nee
2 / ε0me( ) .  The standard practice is to use

X = ω p
2 / ω2 Y = Ω/ ω N or µ = kc /ω

Then substitute ε into Det kk − k 2i +
ω 2

c2 ε
 
 
  

 
= 0 , choosing axis so that kx = 0

k = k ⋅ 0,sinθ , cosθ( )

and θ is the angle between k and B0.  The equation for the determinant becomes

ε =

− N2 +1 −
X

1 −Y2

iXY

1 − Y2
0

−iXY

1 − Y 2 −N 2 cos2θ + 1 −
X

1− Y2 N2 sinθ cosθ

0 N2 sinθ cosθ −N2 sin2θ + 1− X

= 0

That is, in the cold plasma approximation ε is independent of k, and the dispersion relationship is

a quadratic for N2.  The solutions are called the Appleton-Hartree formula for the refractive

index:

N2 = 1 −
X 1 − X( )

1 − X −
1

2
Y2 sin2θ ±

1

2
Y2 sin2θ 

 
 
 

2

+ 1− X( )2Y2 cos2 θ
 

  
 

  

1/ 2

Parallel (to B) propagation (θ = 0):

N2 = 1 −
X

1 ± Y

and the characteristic polarization of the wave electric field is

Ex

Ey

=± i; E z = 0

This is  circularly polarized waves with left and right handed E rotations
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Perpendicular (to B) propagation (θ = π/2)

N2 = 1 − X or N 2 = 1−
X 1 − X( )

1− X −Y2

with characteristic polarization

Ex = Ey = 0

Ex

Ey

=− i
1 − X − Y2

XY
; Ez = 0

Electron density measurements in the earth's ionosphere.

Waves entering ionized medium at an angle are described by Snell's law for optics.  Consider a

plane wave front entering an ionized medium with refractive index µr from a medium with

refractive index µi.  If in the ionized medium the electron density increases with distance into the

medium (e.g. height) then the phase velocity increases with distance, so the wave front is bent.

The wave will ultimately turn around.  Let i be angle of incidence and r be angle of refraction

µi sini = µr sin r

The RHS describes the characteristics of the em wave along the ray path in the plasma.  µr is the

refractive index at any point along the plasma path.  If the space between transmitter and

entrance layer of plasma is assumed to be a vacuum, then µi = 1.  Total internal reflection occurs

when r = 900, and sin(i ) = µr.

Consider the ionosphere.  Send vertical waves upwards (i = 0).  They will be reflected when sin(i

) = µr.= 0, i.e. when the signal frequency equals the local plasma frequency.  If the difference in

time is measured between transmitting and receiving a signal, the height h at which the reflection

occurred can be calculated.  Hence we can get density versus height.  But problems with B fields.

The Interferometer

Any device in which two or more waves interfere by coherent addition of electric fields. The

intensity observed is modulated according to whether the waves interfere constructively or

destructively.
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Simplest system - two waves with monochromatic fields E1exp(iωt) and E2exp(i(ωt+φ)).  Add

these two phase-displaced waves and the total field is

Et = E1 + E2e iφ( )eiωt

The power detected by a square law detector is proportional to

Et

2
= E1

2 + E2
2( ) 1+

2E1E2

E1
2 + E2

2 cosφ
 
 
  

 
 

The output intensity (power) has a dependence on the phase-  see below.

Michelson Interferometer

A two beam system, with one beam splitter, two arms in which the beams travel in both

directions, two outputs, one of which is also along the input.  The arms can be straight free space

paths or micro wave guides.  Beamsplitters may be a partial reflectors or microwave couplers.

Phase differences between the two components of one of the output beams arise, by changes in

the refractive index in one of the arms.
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Mach Zender Interferometer

A two-beam system with two arms in which beams travel only in one direction.  Both outputs are
separate from the input.
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Fabry Perot Interferometer

A multi-beam interferometer in which there are two beam splitters and two composite output

beams.  The output is not a simple cos term as in the two arm systems. The phase shift

interpretation is more complex, so it is not often used as a plasma refractive index measurement

device.

Simple analysis

Mach Zender system.  Assume plasma properties vary slowly. Then locally we can consider the

plasma to be made up of slabs of uniform condition.  Thus for any frequency and propagation

direction there is locally a well defined k and refractive index µ or N.  Wenzel, Kramers and

Brillouin are associated with the solution techniques. The propagation of the wave front is

expressed as

E ≈ ei k• dl −ωt∫

This is OK as long as the fractional variation of k in one wavelength is small, so that coupling

between waves can be ignored.  The phase of the emerging wave is given by

φ = k • dl =∫
ωµ
c∫ dl

This is the total phase lag in the plasma arm.  There is a significant length outside the plasma,

and the second arm has a length and lag which may not ne known.  These problems are removed

by comparing the phase difference between the two arms

∆φ = kplasma − k0( )dl =∫ µ − 1( ) ω
c∫ dl

(assume k0 = ω/c, i.e. in vacuum).  Then use
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µ =
ck

ω
= 1 −

ω p
2

ω2 = 1−
ne

nc

where the cutoff density is

nc =
ω 2mε0

e2

Plotting µ2 (= N2) against ne gives a straight line - see below

For ne < nc the interferometer gives us a measure of the density

∆φ = µ −1( )ω
c∫ dl =

ω
c

µ − 1( )∫ dl =
ω
c

1−
ne

nc

−1
 

 
  

 
 ∫ dl

Far from the cutoff we have

∆φ ≈
ω

2cnc

ne∫ dl
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Determining the phase shift

We need to interpret the output power as measured by a detector in terms of a phase shift..

Problems include

1.  Amplitude variations of E1 and/or E2 (absorption, refraction)

2. Phase change direction ambiguity.  This occurs when φ = 0, π, 2π, etc.  At these points

d|Et|2/dφ = 0, and there is a null in the phase sensitivity.  For a time dependent φ it is not

possible to tell if there has been a change in the sign of dφ/dt at these problem points.

Amplitude variations are alleviated by monitoring both outputs since the total powers in both

outputs is equal to the sum of the powers in the interferometer arms.  The second problem

requires an additional output whose power is proportional to sinφ (instead of cosφ) That is, it

requires  a second output in quadrature with the first.  This could be done by providing a second

interferometer with a phase π/2 along the same path as the first.  The usual solution is to

modulate the interferometer phase.  Then the interferometer is effectively reading cos and sin

functions, and this must be done faster than variation in φ occur.

A wave frequency is the rate of change of phase.  This variations in phase can be as variations in

frequency.  Phase modulation is equivalent to frequency modulation, and the problem is similar

to FM detection.
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Look at the final beam splitter, where the two waves are mixed.  One wave has been phase, or

equivalently frequency, modulated by the plasma arm (ω2).  The reference arm (ω1) is a local

oscillator in the detection of the received wave.  The output contains sum and difference

frequencies : of interest id the low frequency ∆ω = ω2 - ω1.

If there is no density change (subscript 0) then ω2
0  = ω1

0  and ∆ω0  = 0.  Now let the phase

change and the output frequency ≠ 0.  But both positive and negative ∆ω give an output

frequency |∆ω|, so there is an ambiguity.  Introduce an extra phase modulation.  Then even when

the plasma phase shift is constant the frequencies ω2
0  ≠ ω1

0 .  Then the output contains ∆ω0  = ω2
0

- ω1
0  (take as constant).  The final mixer acts as a heterodyne receiver with an intermediate

frequency ∆ω0  (instead of a homodyne receiver with ∆ω0  = 0), and the output signal s at a

frequency ∆ω = ∆ω0 + dφ / dt
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The output frequency thus increases or decreases according to the direction of the phase change,

and "problem solved".

Modulation and Detection

1. Mechanical modulation  - insert a rotating wheel into one of the arms.  The wheel has a

diffraction grating cut into its rim to optimize refection.  Doppler shifts:

ω ' = ω
1+ vi / c

1 − v r / c
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vi, vr  are the components of wheel velocity along incident and reflected paths.

2. Sweep source frequency.  If one arm is much longer than the other, the frequency of the waves

when they interfere, are different by

∆ω0 =
dω
dt

L

vp

L is difference in arm length, vp is radiation phase velocity  (= c), dω/dt is sweep rate

3. Use two different sources.  Need ∆ω/ω very small.

Finally. count number of periods of the IF beat frequency and subtract from it 2π∆ω0t (what

would be seen if there is no phase change).

Coherence, diffraction, refraction.

The frequency used depends on density to be probed.  For ne = 1017 to 1021 m-3 then plasma

frequency from 3 to 300 GHz, and wavelengths from 100 to 1 mm.  Need almost coherent beams

(narrow bandwidths) because contributions to output power from different frequencies must all

experience the same phase shift, or the degree of modulation of the output power caused by

phase changes (the phase contrast) will be decreased (random phase additions will occur).

Coherent waves follow Gaussian optics: (spatial eigenmodes of the beam), and are diffraction

limited, so that angular divergence and beam size are uniquely related through diffraction.
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Bring a diffraction limited beam to a focus.  The angular half width far from focus (Fraunhofer

limit) is given by the condition that the difference in path length across the wave front is about

λ/2, and α = λ/d.  Huygens wavelets add up in phase.

At the detector we need signals to be coherent in space: we need alignment and wave fronts to be

parallel.  In examples a) wave fronts not parallel, and b) misaligned.  These are equivalent, and

contrast will be lost if relative displacement of wave fronts is > λ/2, equivalent to an angular

deviation of beam directions of α/2 = (λ/2 d) - the diffraction limited size.  Therefore condition

for parallel wave fronts is the same as the condition for far-field beams to overlap.
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Take adequate alignment without plasma.  Refraction moves beam from path.  Wave front

emerging will have an angle θ wrt incident wave front.  Assume total phase difference along path

varies uniformly across beam

θ =
dφ
dy

λ
2π

=
d

dy
µdl∫
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For a beam of dimension d, coherence is maintained if

π > ∆φ = d
dφ
dy

=
2πθd

λ

θ < λ
2d

This is just the condition for a diffraction limited beam for the far field beam patterns to overlap.

Frequency choice

minimum: significantly above maximum expected plasma frequency

maximum: mechanical stability of interferometer (angular alignment, stability of path length).

Vibration length change l then phase change is 2πl/λ - and worse for low λ (high f).  The phase

shift from the plasma ∆φ ∝ λ, so the ratio of spurious vibrational phase error to plasma phase

change  ∝ λ-2.

One can use two interferometers at very different wavelengths to overcome the problem.  A very

short wavelength mostly measures vibration, while the longer wavelength measures both

vibrational and plasma phase shifts.

Abel Inversion

We must get from line integral to local values.  Consider a cylindrical symmetric parameter (e.g.

density) f(r) of which we only know the line integrals

F y( ) = f r( )dx
− a

2 −y
2

a2 − y 2

∫ = 2 f r( )
y

a

∫
rdr

r2 − y2
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(change x integral into an r integral). Studied by Abel:

f r( ) = −
1

π
dF

dy
r

a

∫
dy

y2 − r2

Interference imaging

Given intense sources and sensitive detectors, a one or two dimensional interferometric image

can me obtained.  Usually introduce an initial misalignment to obtain a pattern of linear

interference fringes.  The plasma induced phase shift moves the position of the fringes to produce

a pattern in the image plane, indicating the phase shift.  The misalignment is equivalent to spatial

modulation instead of temporal in the heterodyne detection systems
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Schlieren and Shadowgraphs

Here we rely on the deviation of different paths due to refraction. No reference beam is used.

Schlieren are sensitive to the first gradient of refractive index, and shadowgraphs are sensitive to

the second.
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For Schlieren, a plane parallel beam illuminates the plasma, whose thickness << distance to the

lens.  The ray is deviated by an angle

θ =
dφ
dy

λ
2π

=
d

dy
µdl∫

A knife edge at the focal point of the lens partially obstructs the image formed by the undeviated

rays. The ray deviation causes the obstruction to increase or decrease depending on the sign of θ.

The image is not shifted, but the intensity is altered by the variable obstruction of the edge.  The

change in intensity is proportional to the local value of θ.

For Shadograms, the electromagnetic wave energy that would have fallen at (x,y) is moved to

(x',y'), where e.g. y = y + L θ(y), and as before

θ =
dφ
dy

λ
2π

=
d

dy
µdl∫

Then

(x' , y' ) = (x + L
d

dx
µdl∫ , y + L

d

dy
µdl∫ )

For a beam of uniform intensity Ii the detected intensity will be

Iddx' dy' = Iidxdy

so that

Ii

Id

= 1+ L
d 2

dx2 +
d2

dy2

 
 
  

 
µdl∫

For small intensity deviations  
∆Id

I
= L

d2

dx2 +
d2

dy2

 
 
  

 
µdl∫
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Faraday rotation
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Consider a wave propagating through a medium in which the polarization of the two

characteristic modes are circular; so that in a coordinate system with k along z the polarization is

Ex/Ey = ±i.  Suppose also that the two characteristic waves have different refractive indices, µ+

and m-.  Then to sort out what happens consider the two waves separately, and superimpose the

final results.  Let the wave be linearly polarized at z = 0 so that Ey = 0 and Ex = E.  Then this is

written as

E 0( ) =
E

2
1, −i( ) + 1, i( )[ ]

At z ≠ 0 the decomposition is

E z( ) =
E

2
1,−i( )e iµ +ωz / c + 1,i( )eiµ − ωz / c[ ]

= E exp i
µ+ + µ−( )

2

ω
c

z
 

  
 

  cos
∆φ
s

 
 

 
 ,sin

∆φ
2

 
 

 
 

 
  

 
  

where

∆φ = µ+ − µ−( )ω
c

z

is the phase difference of the characteristic waves because of the different refractive indices.

Therefore the polarization after z is rotated an angle of ∆φ/2 - the Faraday effect.
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At arbitrary angles it is found that , as long as one is not too close to perpendicular, the

characteristic polarizations are circular.  The Faraday rotation along the beam is

α = 2.615x10−22λ2 ne

L
∫ B||dz

where λ is in µm, B in kG, α in radians, L in cm.

After passing through the plasma the probing beam is both phase shifted and its polarization has

become slightly elliptical.  The major axis of the vibrational ellipse is rotated by α.  The wave is

passed through a half wave plate (for calibration).  With the optical axis set at 450, the plate just
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interchanges s and p components.  The probing beam is then combined with a frequency-offset

reference wave at a polarizing beam splitter.  The beam splitter is made of tungsten wires parallel

to the plane of incidence.  Its refection and transmission properties are such that the p component

of an incident wave is split into two p waves of equal amplitude, while the s component is almost

completely transmitted.  In addition, the reflected and transmitted p components undergo phase

shifts of 3π/4 and π/4, respectively, while the s component is unaffected. The signal at the

polarization detector is a beat signal, with amplitude and phase depending on the intensity of the

probe and reference beams and on their polarization parameters.  The amplitude is a good

measure of the Faraday rotation angle.
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Reflectometry

A wave propagating through a plasma of increasing density along the path can arrive at the point

where ω = ωp, and reflection occurs at the cut off.  Detecting the reflected wave is called

reflectometry.  It requires ω < ωp, and this is the opposite limit from interferometry.

The objective is to measure the phase change.  Note that this is a line integral effect, unlike radar

which is a local effect.  The phase difference between forward and backward waves is

φ = 2
1

c
ω2 − ωp

2 dx −
π
2

a

xc

∫

where xc is the cutoff location, and a is the edge.  Note the phase change at the cutoff (reflection)

point.  ωp ∝ ne, so the line integral of the density is measured.  Different length of travel are

measured by changing (sweeping) the frequency.

Note that by differentiating wrt ω, substituting the vacuum wavelength λ = 2πc/ω leads to

dφ
dω

= 2
dx e

cdλp

 

 
  

 
 

λpdλp

λp
2 − λ2

λ

∞

∫
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This is the same integral as in Abel's inversion if we let

λ → y; λp , → r;
dφ
dω

→ F y( ); dxc

cdλ p

→ f r( )

One can deduce the position of the cutoff xc(ω) given φ(ω) for frequencies below w:

xc ω( ) = a +
c

π
dφ
dω '

 
 

 
 

dω'

ω 2 − ω '2
0

ω

∫

Physical Optics and Fourier Analysis

The two RH lenses 2 and 3 produce a real image D of the real object C, a cross grating.  Lenses 1

and 2 project a pinhole diaphragm A into a real image of that diaphragm at B.  Together the three

lenses perform two independent processes of image formation.  Now insert masks in the Fourier

transform plane.  Planes A and B are conjugate, as are planes C and D  If distances are correctly

set, B contains the Fourier transform of the intensity distribution.  Insert a mask at B with only a

pinhole, (at the place of the zero order) and D will receive light but no information.  We have

spatial filtering.
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Scalar wave equation

∇2V x,t( ) =
1

c2

∂2V x,t( )
∂t2

V(x,t) is the optical disturbance.  For monochromatic waves

V x,t( ) = ψ x( )ei2 πvt

x = xi + yj + zk, i j and k are unit vectors along the coordinate axis, ν is frequency, y describes

spatial variation of amplitude.  Substitute into wave equation to get Helmholtz equation

∇2ψ +
2πv

c
 
 

 
 

2

ψ = 0; ∇2ψ + k2ψ = 0

Construct a solution as follows

a) a geometric point of light will give rise to spherical wave emanating in all directions

(Huygens)

b) Helmholtz equation is linear, so we can superpose solutions

c) An arbitrary wave shape can be represented by a collection of point sources whose strength is

the amplitude of the wave at the point.  The field at any point in space is a sum of spherical
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waves.  Actually we must allow for a preferred direction (propagation) by including an

inclination factor.

Spherical wave described by

ψ sp =
e±ikr

r

r is distance from point source to observation point, ± indicates converging or diverging waves.

If the disturbance across a plane aperture is described by ψ ' ξ( ) (ξ is position vector in aperture

plane) then the Huygens principle development for the field at a point x beyond the screen  is

ψ x( ) = K ψ ' ξ( )Λ(x ,ξ)
e+ ikr x,ξ( )

r(x, ξ)
dξ

aperture
∫

i.e. a spherical wave of amplitude ψ ' ξ( ) emanates fro each point ξ  in the aperture.  Note that

Λ(x,ξ) is the inclination factor, essentially constant near the axis (a line normal to the aperture

plane passing through the center of the aperture).  Actually Λ(x,ξ) = −icos θ( )/ 2λ( )  where θ is

the angle between the normal and the direction of propagation at a point.  Then with the

restriction to the observation point

ψ x( ) = K ψ ' ξ( ) e+ ikr x, ξ( )

r(x ,ξ)
dξ

aperture
∫

The r in the denominator affects only the amplitude and is slowly varying if ξ and x are restricted

to near the axis.  However in the exponent it is important

ψ x( ) =
K

z
ψ ' ξ( )e+ikr x, ξ( )dξ

aperture
∫

Now
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r x,ξ( ) = x − ξ( )2
+ y − η( )2 + z2[ ]1 / 2

= R 1 +
ξ2 +η2

R2
−

2 xξ + yη( )
R2

 

  
 

  

1 / 2

where R2 = x2+y2+z2.   Now expand for relatively large distances so that

r x,ξ( ) = R +
ξ2 +η2

2R
−

xξ + yη( )
R 1)

Two cases:

Fraunhofer or far field if the term ξ2 +η2( )/ 2R( )
  
can be ignored, Fresnel otherwise

Far field.  ξ2 +η2( )/ 2R( ) is eliminated if R is increased until k ξ2 + η2( )
max

/ 2R( ) << 1.  Then ,

noting z2 >> x2 + y2,

ψ x,y( ) =
Ke−ikz

z
ψ ' ξ,η( )exp

−2πi

λz
xξ + yη( ) 

 
 
 
dξ

aperture
∫∫ dη 2)

Fraunhofer condition:  Place a lens in the (ψ,η) plane and observed the diffraction pattern at the

focus.  A lens is a device which converts a plane wave front into a spherical wave front of radius

f.

P is incident plane wave, S is emerging spherical wave.  Now (f - x)2 + ρ2 = f2 or 2xf = ρ2 - x2.

Take x small, and x2 ignored, so

 x =
ρ 2

2 f

The phase change introduce by the lens is

φ = kx = k
ξ2 + η2

2 f
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The lens in the (ξ,η) plane introduces an additional exp[-ik(ξ2+η2)/(2f)] because it produces a

spherical converging wave.  This term cancels the term (ξ2+η2) arising from equation 1 when f =

z.  The field at the point (x,y) in the focal plane is

ψ x,y( ) =
Ke−ikf

f
ψ ' ξ,η( )exp

−2πi

λf
xξ + yη( ) 

  
 
  dξ

aperture
∫∫ dη

3)

Equations 2 and 3 are identical if z = f.  Thus the field in the far zone or in the focal plane of a

lens is the Fourier Transform of the field across the diffracting aperture.

Phase Contrast Imaging

Electron density fluctuations are traditionally measured by scattering techniques.  The scattered

radiation is detected in the far field where it is resolved into wavenumber components, or at an

image of the scattering volume provided by an optical system.  Then the light is spatially, rather

than wave number, resolved.  When the scale of density fluctuations are sufficiently large,

(Raman Nath diffraction), then the effect of the fluctuations on the transmitted wave is described

by

φ = k • dl =∫
ωµ
c∫ dl = k0 µ∫ x ,z,t( )dl

z is along the path length, x is perpendicular to the path length, k0 is the wave number of the

beam in vacuum.. The plasma with its fluctuations acts like a thin phase object, causing small

phase changes.

Whereas an interferometer uses a reference beam external to the plasma, phase contrast uses an

internal reference.  The basic set up is as above.  A collimated beam of monochromatic light is
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transmitted through the refractive object centered at Σ and focused by a lens L1 onto the phase

plate (or mirror).  The undiffracted (UD) light is focused onto the central depression on P.  The

diffracted light D (diffracted by the refractive object) intersects the plate beside it.  The depth of

the depression P (the conjugate area) is designed to introduce a π/2 phase shift: the diffracted and

undiffracted components have a different phase introduced into them.  The lens L2 recombines

the components in the image plane .  The π/2 phase shift causes interference between the

diffracted and non diffracted components.

For an incident plane wave of unit amplitude the transmitted amplitude can be written as

A x,t( ) = eiφ x, t( ) ≈ 1+ iφ x,t( )

The amplitude in the focal plane of L1 is a scaled version of the Fourier transform ˜ A k,t( )  of

A x,t( ) . with k = 2πy/λf, y being the distance to the optical axis.  Then

˜ A k,t( ) = δ k( ) + i ˜ φ k,t( )

˜ φ k,t( )  is he diffracted part, and ideally the action of the phase plate is to phase shift by

π/2 without affecting the undiffracted part δ k( )

˜ A 1 k,t( ) = δ k( ) + ˜ φ k ,t( )

Lens L2 performs the inverse Fourier transform

A1 x,t( ) =1 + φ x,t( )

The detected signal A1 x,t( ) 2
 contains a term linear in φ(x,t):

A1 x,t( ) 2
≈ 1 + 2φ x,t( )

i.e.

I x,t( ) ≈ I0 x,t( ) 1 + 2φ x,t( )( )

where I and I0 are the intensities in the presence and absence of the plasma.  The conjugate area

(slot) must be at leas as wide as the focal spot size, and only the diffracted light falling beside it

(with a sufficiently large angle of diffraction) will contribute to the intensity.  Thus the

instrument is a spatial high pass filter.
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